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Abstract

The notion of real radicals is a fundamental tool in Real Algebraic Geometry.
It takes the role of the radical ideal in Complex Algebraic Geometry. In this article
I shall describe the zero-dimensional approach and efficiency improvement I have
found during the work on my diploma thesis at the University of Kaiserslautern (cf.
[Spa07]). The main focus of this article is on maximal ideals and the properties
they have to fulfil to be real. New theorems and properties about maximal ideals
are introduced which yield an heuristic prepare max which splits the maximal
ideals into three classes, namely real, not real and the class where we can’t be sure
whether they are real or not. For the latter we have to apply a coordinate change
into general position until we are sure about realness. Finally this constructs a
radomized algorithm for real radicals. The underlying theorems and algorithms
are described in detail.
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1 Introduction
The original task arose from an article by Becker and Neuhaus written in 1998 (see
[BN98]), where they present an idea to compute the real radical of a polynomial ideal.
The following article speeds up the computation time of the algorithm which they de-
scribed there:

Becker and Neuhaus idea was a coordinate change to reduce to the univariate case.
Such coordinate changes cause a coefficient growth which slows down the computa-
tion.

Our idea is to study the properties of maximal ideals M and find a heuristic to
decide whether they are real, i. e. if re

√
M = M or not. This arose from the fact that

the primary decomposition in SINGULAR is well implemented and very efficient in the
average case.

The article is structured in three parts:
Section 1 gives a short overview of and motivation for the notion of τ -radicals. In

particular the real radical is recalled. Some theory on how the τ
√-functor behaves and

first properties of K-algebras A are stated. The real radical commutes with intersection
and localisation. For an arbitrary ideal I � A, we know re

√
I = re

√
re
√

I , and re
√

I is a
radical ideal by definition. A special form of the Real Nullstellensatz over Q is stated.
One of the fundamental statements is Theorem 5 which tells us that the real radical of I
is the intersection of all real prime ideals P containing I . In fact, giving rise to all real
points, the real radical of I is the intersection of all real maximal ideals M containing I .
The section finishes by sketching how the one-to-one correspondences from algebraic
geometry over algebraically closed fields are translated to real algebraic geometry by
means of the real radical. Thus a real maximal ideal corresponds to a zero-dimensional
real zero-set which can be seen as finitely many conjugate points in the field extension
of Q to Ralg (or R by the Tarski Seidenberg principle).
Prime ideals correspond to irreducible Q-varieties in Rn and the primary decomposi-
tion is just the decomposition of a Q-variety Vre(I) ⊂ Rn into its irreducible compo-
nents.

The univariate case of polynomials f ∈ Q(y1, . . . , ym)[x] which is a special case
of zero-dimensional ideals is explained in Section 2. The main idea is the following:
Let

f = ε · pα1
1 · p

α2
2 · · · pαr

r .

If we could decide whether a prime polynomial pi is real or not, then the real radical of
the principal ideal 〈f〉� Q(y1, . . . , ym)[x] is

re
√
〈f〉 = 〈

∏
pi is real

pi〉.

This provides an idea how to compute the real radical of a univariate polynomial.
After describing the machinery for the univariate case, an algorithm for comput-

ing the zero-dimensional radical is explained in section 3. In contrast to the article of
Becker and Neuhaus, the decision was to compute the primary decomposition of the
zero-dimensional input and to give a heuristic for deciding whether a maximal ideal is



real or not. This heuristic yields a procedure prepare max which prepares a max-
imal ideal in such a way that we can avoid a coordinate change into general position
as often as possible. If a coordinate change can’t be avoided we use the procedure
GeneralPos. Its input is a list of maximal ideals where a change can’t be avoided.
Here a suitably randomised coordinate change is computed such that we can check
the properties of prepare max for the transformed maximal ideals and afterwards
we intersect all real maximal ideals of this list. The procedure RealZero gets a
zero-dimensional input I and computes its primary decomposition. Then it considers
separately every maximal ideal and tests if a change is needed to compute the real part.
Afterwards it intersects the real radicals of all these ’nice’ maximal ideals and restarts
the procedure GeneralPos for the list of ’bad’ ideals. To conclude the article section
3 is finished with one important Theorem of Becker and Neuhaus ([BN98] Theorem
4.5.) which explains the computation real radicals of general polynomial ideals via a
reduction to the zero-dimensional case.

I would like to thank Dr. Anne Frühbis-Krüger and Prof. Dr. Gerhard Pfister for
many fruitful discussions. I want to thank the SINGULAR team of the University in
Kaiserslautern, especially Dr. Hans Schönemann, for supporting me with my SINGU-
LAR problems while implementing the algorithms for my diploma thesis and giving
good advise on the computation.

2 τ -real ideals and the real radical
This section uses some basics in real algebra which can be found in [KS89]. We define
τ -radicals for pre-orderings σ of real fields K.

Definition 1 (τ -radicals and the real radical)
Let K be a formally real field and τ a pre-ordering of K. For any K-algebra A, we
define the τ -radical of an ideal I � A by

τ
√

I = {f ∈ A : f2r +
m∑

i=1

aig
2
i ∈ I with r, m ∈ N, gi ∈ A and ai ∈ τ ∀i}.

An ideal I with the property I = τ
√

I is called τ -real.
If τ =

∑
K2 =: re, then re

√
I is called the real radical of I .

We can easily verify that τ
√

I is an ideal. For the special case of subfields K of R we
get the following definition.

Definition 2 (Real radical)
Let A be an affine K-algebra, I � A any ideal. We define the real radical of I to be

re
√

I :=〈f ∈ A : ∃r, m ∈ N :

f2r +
m∑

i=1

kig
2
i ∈ I, ki ∈ K≥0, gi ∈ A〉

I is called real if and only if re
√

I = I .

To see that both definitions do not differ for Q ⊆ K ⊆ R and the special case τ =
re =

∑
Q2 we prove the following lemma:



Lemma 3
Let K = Q, then re =

∑
K2 = K≥0 is an ordering of K.

PROOF∑
Q2 ⊆ Q≥0 is clear.
Let p

q ∈ Q>0. Then

p

q
=

pq

q2
=

pq∑
i=1

(
1
q

)2

∈
∑

Q2.

Hence Q has a unique real closure and this closure is Ralg := Q ∩ R, so we get the
following corollary.

Corollary 4
For every algebraic extension K of Q which is in R there exists only one possible
ordering, i. e.

∑
K2 = K≥0.

2.1 Some properties of the τ
√-functor

For this subsection see Chapter 2 of [BN98].

Theorem 5
Let (K, τ) be a pre-ordered field, I, J ideals in some K-algebra A and S a multiplica-
tive closed subset of A satisfying 1 ∈ S and 0 6∈ S. Then we have:

(a) τ
√

I ∩ J = τ
√

I ∩ τ
√

J

(b) τ
√

IS = ( τ
√

I)S

Here τ
√

IS denotes the τ -radical of the extension ideal IS of I in the quotient ring AS

which naturally is a K-algebra.

For prime ideals and prime polynomials we get the following properties:

Lemma 6
Let (K, τ) be a pre-ordered field and I a τ -real ideal of some K-algebra A. Then all
minimal primes of I are τ -real as well.

Corollary 7
Let (K, τ) be a pre-ordered field and I an ideal of some K-algebra A. Then τ

√
I =⋂

P , where P ranges over all τ -real primes containing I .

PROOF
The τ -real ideal τ

√
I is radical and thus the intersection of its minimal primes. These

are τ -real by Lemma 6.

The most important proposition which describes the relation between τ -realness and
the possibility to extend pre-orderings is stated below.

Proposition 8
Let (K, τ) be a pre-ordered fields and P a prime ideal of some K-algebra A. Then the
following statements are equivalent:

(a) P is τ -real



(b) There is some α ∈ X(K) (which is the set of all orderings for any formally real
field K.) satisfying α ⊇ τ which can be extended to an ordering α of the function
field k(P ) := Q(A�P ).

(c) There is some α ∈ X(K) satisfying α ⊇ τ such that P is α-real.

Moreover if A is an affine K-algebra and P a maximal ideal of A then the statements
(a)− (c) are equivalent to:

(d) There is some α ∈ X(K) satisfying α ⊇ τ such that k(P ) can be embedded into
some real closed field containing the real closure of (K, τ).

Finally the real radical describes a real variety as a collection of all real points
respectively. conjugated points.
Proposition 9
Let (K, τ) be a pre-ordered field and I an ideal of some affine K-algebra A. Then
τ
√

I =
⋂

M , where M ranges over all τ -real maximal ideals of A containing I .

2.1.1 The behaviour of prime polynomials

The well-known sign change criterion of D. Dubois and G. Elfroymson (see [KS89]
Chapter 2 12 Theorem 4) is:
Theorem 10
Let (K, τ) be an ordered field with its unique real closure R and f ∈ K[x1, . . . , xn]
be an irreducible polynomial. Then the following are equivalent:

(a) The ordering τ can be extended to an ordering α over the function field k(f) =
Q(K[x1, . . . , xn]/〈f〉).

(b) f is indefinite over R, i. e. there exists a, b ∈ Rn such that f(a) · f(b) < 0.

This leads us directly to the following remark about the situation over th special
case that K = Q.
Remark 11
Let f ∈ Q[x1, . . . , xn] be an irreducible polynomial. Then f is real (i. e. 〈f〉 is real)
if and only if f is indefinite over Ralg and thus by the Tarski-Seidenberg principle
indefinite over R.

PROOF
f is real if and only if the ordering re = Q≥ can be extended in Q(Q[x1, . . . , xn]/〈f〉)
by Proposition 8. By the sign change criterion this can be extended if and only if f is
indefinite over Ralg .

As another remark for polynomials over Q(y1, . . . , ym) we get:

Remark 12
Let f ∈ Q(y1, . . . , ym)[x1, . . . , xn] be an irreducible polynomial. Then f is real if and
only if there exists an ordering α of Q(y1, . . . , ym) such that f is indefinite over the
corresponding real closure Rα.
PROOF
Let F := Q(y1, . . . , ym).
Let us first observe that since f is irreducible the ideal 〈f〉 is a prime ideal. Let now
α ∈ X(F ) be an ordering such that f is indefinite over Rα. This ordering α of F can
be extended to an ordering α in k(f) = F [x1, . . . , xn]/〈f〉. By Proposition 8 (b) this
is equivalent to the statements that 〈f〉 is real. Thus f is real.



2.2 The Real Nullstellensatz
We now state the Real Nullstellensatz which was proved by Krivine in the 60s. We
first recall the set of real points. For more detailed information see [KS89] or ([BN98]
Definition 2.7 and Theorem 2.8)

Definition 13
Let (K, τ) be a pre-ordered field and I � K[x1, . . . , xn]. For a ordering α ⊇ τ let Rα

denote the unique real closure of (K, α). Then we define the set of all τ -real point Vτ

as follows:
Vτ (I) = ∪α⊇τVRα

(I).

Especially the set of all real points is denoted by Vre(I).

We get the general Real Nullstellensatz:

Theorem 14 (The general Real Nullstellensatz)
Let (K, τ) be a pre-ordered field and I � K[x1, . . . , xn] be an ideal. The we have

IK(Vτ (I)) = τ
√

I.

The following lemma is useful for the computation in real closed fields. Note that it
is a kind of specialisation of the Weak Nullstellensatz over algebraically closed fields.

Lemma 15
Let R be any real closed field and M � ·R[x1, . . . , xn] be a maximal ideal. Then we
have the following 2 cases.

i. M is not real, so VR(M) = ∅.

ii. M is real and VR(M) consists of only one point.

PROOF
As M is a maximal ideal R′ := R[x1, . . . , xn]/M is a field extension of R. As R is
real closed, we know that R = R(i) and [R : R] = 2. So we have the following 2
cases.

[R′ : R] =1 Then R′ = R and every zero of M is real thus M is real.
Let a = (a1, a2, . . . , an) ∈ Rn so a ∈ VR(M).
Now IR(a) = 〈x1 − a1, x2 − a2, . . . , xn − an〉 is a maximal ideal which
contains M as 〈x1−a1, x2−a2, . . . , xn−an〉 = IR(a) ⊂ IR(VR(M)) =
M . Thus M = 〈x1−a1, x2−a2, . . . , xn−an〉. And hence VR(M) = {a}
is exactly one point.

[R′ : R] =2 Then R′ = R and R is not real, thus M is not real by Proposition 8.
Hence by the Real Nullstellensatz (Theorem 14) VR(M) = ∅.

2.3 One-to-one correspondences in real algebraic geometry
Let K be any subfield of R and A = K[x1, . . . , xn]. Here the following special form
of Theorem 14 holds:

Theorem 16 (Special Real Nullstellensatz)
Let J � K[x1, . . . , xn], then:

IK(VR(J)) = re
√

J



This yields the well-known one-to-one correspondences.

real ideals 1:1←→ K-varieties in Rn

real prime ideals 1:1←→ irreducible K-varieties in Rn

real maximal ideals 1:1←→ irreducible 0-dim. K-varieties in Rn

So every correspondence over C occurs in a natural way by means of real radicals
in real algebraic geometry.

3 The univariate case
To obtain an algorithm for the zero-dimensional case, we first consider the univariate
case, i. e. ideals in the principal ideal domain F [x] where F = Q(y1, . . . , ym). The
main idea for the univariate case is the following: If we compute the real radical of
〈f〉� K[x], we know that factorising f corresponds to a primary decomposition. So if

f = εpm1
1 · pm2

2 · · · pmr
r

then the 〈pi〉, for all i = 1, . . . , r are precisely the minimal primes of 〈f〉. Such a
minimal prime is real if and only if VR(pi) 6= ∅, i. e. if p has a real root. So 〈pi〉 is real
if and only if pi is real.

Hence the real radical of 〈f〉 is:

re
√
〈f〉 = 〈

∏
pi real

pi〉.

This leads us directly to the demand of a criterion to know whether an irreducible
polynomial p is real or not.

Here we have two cases:
In the easier first case F = Q i.e. m = 0; the general case m > 0 requires more

knowledge of real algebra.

3.1 The special univariate case
Definition 17
Let p ∈ Q[x] be an irreducible polynomial. We call p real if p has a real root α ∈ R.
Then p is the minimal polynomial of this root α.

Note that p is real if and only if VR(p) 6= ∅, that is p is real if and only if 〈p〉 is
real, since 〈p〉 is a maximal ideal and re

√
〈p〉 ⊇ 〈p〉. Hence the decision of being real

for prime polynomials reduces to a root counting problem.
The solution to this problem is the following:

If the degree of p is odd the fundamental theorem of algebra over R states that p has
a real root. But if the degree of p is even, we can’t be sure if p has a real root. In this
case we use the theorem of Sturm, which counts the number of all distinct real roots
of a non–constant polynomial f ∈ K[x] in an interval [a, b], where a < b. The best
a and b can be found by computing the Cauchy bound for polynomials. For detailed
description of Sturm’s theorem and its applications see [Coh93].



3.2 The general univariate case
Contrary to the special case F = Q the general case of polynomials in Q(y1, . . . , ym)[x]
is not a real root counting problem as we do not know about sign or when a root is real.
Thus we need some tools of real algebra-

The following special form of Lemma 4.1 in [BN98] gives a solution to the decision
problem of realness for prime polynomials:

Lemma 18
Let p ∈ Q[y1, . . . , ym, x], where m ∈ N0 and degx p > 0 be an irreducible polyno-
mial. Then the following conditions are equivalent:

(a) 〈p〉 ·Q(y1, . . . , ym)[x] is real.

(b) 〈p〉 ·Q[y1, . . . , ym, x] is real.

(c) p is indefinite over R, i. e. there are points a, b ∈ Rm+1 satisfying p(a) · p(b) < 0.

This reduces our problem to decision whether a polynomial has a sign change i. e.
whether it is indefinite or not. For a detailed solution of this problem see the article of
G. Zeng and X. Zeng [GX04].

3.3 Example for the procedure RealPoly
The algorithm RealPoly (cf. SINGULAR Release 3-0-3) computes the real part of a
polynomial in the univariate case. We conclude this section with some examples.

Example 19
1. Let f = x9 + x7 + 2x6 + x5 + 2x4 − 7x3 + 4x2 − 8x + 4 ∈ Q[x]. Factorising

yields f = (x− 1) · (x3 + x2 + x− 1) · (x3 + 4) · (x2 + 1) = p1 · p2 · p3 · p4.
The prime factors p1, p2, p3 are real as they have real roots by the fundamental
theorem of algebra, but p4 has no real root. Hence p4 is not real. So the real
part of f is: f = p1 · p2 · p3 = x7 + 2x4 + x3− 8x + 4.

Let

f =x8y2z4 − 2x7y3z2 + x6y4z4 + x6y4 + x6y2z4 + 2x6yz5 − 2x5y5z2−
2x5y3z2 − 4x5y2z3 + x4y6 + x4y4 + 2x4y3z5 + 2x4y3z + 2x4yz5 + x4z6−
4x3y4z3 − 4x3y2z3 − 2x3yz4 + 2x2y5z + 2x2y3z + x2y2z6 + x2y2z2+

x2z6 − 2xy3z4 − 2xyz4 + y4z2 + y2z2 ∈ Q(y, z)[x].

Factorising yields that

f = (x2y + z)2 · (xz2 − y)2 · (x2 + y2 + 1) = p2
1 · p2

2 · p3.

As p1 and p2 have odd degree in z (resp. in y) they are indefinite and thus real. x2 +
y2 + 1 is positive semi-definite. The real polynomial computed from f is g = p1 · p2 =
x3yz2 − x2y2 + xz3 − yz.



4 The zero-dimensional radical computation
To explain the main idea used in the algorithm for the zero-dimensional real radi-
cal via reduction to the univariate case consider the following example. Let F :=
Q(y1, . . . , ym) as in the last section.

Example 20
Let I = 〈x1 − g1(xn), x2 − g2(xn), . . . , xn−1 − gn−1(xn), gn(xn)〉� F [x1, . . . , xn]
be given. If gn is the real part of gn obtained by the procedure RealPoly the real
radical of I is:

re
√

I = 〈x1 − g1(xn), x2 − g2(xn), . . . , xn−1 − gn−1(xn), gn(xn)〉

PROOF
Let gn =

∏r
i=1 pαi

i be the factorisation of gn in F [xn]. Then every ideal 〈x1−g1, x2−
g2, . . . , xn−1 − gn−1, pi〉 is maximal because of the isomorphism

F [x1, . . . , xn]/〈x1 − g1, x2 − g2, . . . , xn−1 − gn−1, pi〉 ∼= F [xn]/〈pi〉.

As pi is prime we conclude that F [x1, . . . , xn]/〈x1−g1, x2−g2, . . . , xn−1−gn−1, pi〉
is a field.
Now 〈x1 − g1, x2 − g2, . . . , xn−1 − gn−1, pi〉 is real if and only if pi is real because
F [xn]/〈pi〉 is real if and only if pi is real by Propostion 8. Hence

re
√

I
Cor.7=

⋂
M∈Min(I) real

M

=
⋂

pi is real

〈x1 − g1, x2 − g2, . . . , xn−1 − gn−1, pi〉

= 〈x1 − g1, x2 − g2, . . . , xn−1 − gn−1,
∏

pi is real

pi〉

= 〈x1 − g1(xn), x2 − g2(xn), . . . , xn−1 − gn−1(xn), gn(xn)〉

The most important theorem for the zero-dimensional computation in the article
of Becker and Neuhaus is the Shape lemma which gives a detailed information on the
shape of the reduced Gröbner basis of a radical ideal satisfying the property of being
in general position in some way, so that we can obtain the position of an ideal given in
the example above.

Lemma 21 (Shape-Lemma)
Let I be a zero-dimensional radical ideal in F [x1, . . . , xn] with all d roots in F

n
having

distinct xn coordinates. Then the reduced Gröbner basis of I in the lexicographical
ordering has the shape

G = {x1 − g1(xn), x2 − g2(xn), . . . , xn−1 − gn−1(xn−1), gn(xn)},

where gn is a square-free polynomial of degree d and the gi, i < n, are polynomials of
degree d− 1.

PROOF
See Lemma 4.5 of [Spa07].

A naive idea for an algorithm could be:



1. Compute the radical
√

I of the given ideal I .

2. Test if
√

I fulfils the shape condition with respect to one variable xi and compute
a reduced Gröbner basis of re

√
I w. r. t. a lexicographical ordering with lowest

variable xi. If not use a random change into general position until this condition
is fulfilled.

3. Compute the real radical of
√

I as described in Example 20 and undo the coor-
dinate change.

As a coordinate change into general position causes a growth of coefficients and
terms which slows down the Gröbner bases computations it is important to avoid this
change as often as possible. Therefore we give some heuristics, i. e. some kinds of
special cases in which we do not have to apply a random coordinate change.
The idea for the algorithm due to Becker and Neuhaus ([BN98]) has been presented in
Example 20 and Lemma 21. In the rest of this section I will present my own algorithm:

As in SINGULAR the primary decomposition of zero-dimensional ideal is very
efficient in the average case we can use this algorithm as a black box. The main
idea of the primary decomposition due to Gianni/Trager/Zacharias (the command is
primdecGTZ) was presented in [GP02] chapter 4.2. Hence we can assume the maxi-
mality of all ideals we are dealing with. The next subsection presents some properties
for maximal ideals I found.

4.1 How to decide whether a maximal ideal is real
For a maximal ideal there are only two possibilities – either it is real or its real radical
is the whole ring. This is the reason why getting criteria for maximal ideals is not
difficult. The main idea of this section is to find an heuristic which fulfils the following
criteria:

1. Its costs have to be lower in the average case than the costs that a random coor-
dinate change would cost.

2. The decision of realness must be an easy test, i. e. it shouldn’t cost too many
operations.

3. Our heuristic must cancel out maximal ideals M which are not real as early as
possible in the computations.

Here are some properties of maximal ideals that I found during the work on my
diploma thesis ([Spa07]). For the definition of orderings and real closed I refer to
[KS89].

One obvious property of real maximal ideals is the following corollary.

Corollary 22
Let M � ·F [x1, . . . , xn] be maximal and f1, . . . , fn be the univariate polynomials such
that 〈fi〉 = M ∩ F [xi]. If M is real then every fi is real too.

Another simple remark is:

Remark 23
If M = 〈f1, . . . fn〉 � ·Q[x1, . . . , xn] is a maximal ideal with every fi ∈ Q[xi] real,
then M is real.



PROOF
This is clear as every fi has a zero ai in the common real closed field R. Thus
(a1, . . . , an) ∈ Rn is in the real zeros of M .

Note that this simple remark for the rational numbers is not true for an arbitrary
real field F . This remains only true if F is an ordered field. The problem for arbitrary
real fields is the following:
A polynomial fi ∈ F [xi] is real if and only if there there exist orderings α1, . . . , αr

and the corresponding real closures Rα1 , . . . , Rαr such that fi has zeros in every Rαi .
But these orderings αi could occur in a way that there exists no common real closed
ground field Rα and no corresponding ordering α of F such that the polynomials fi all
have a root in Rα, which would yield that M is real. The following counter-example
for arbitrary real fields clarifies the problem:

Example 24
Let M = 〈x2 + 1 + t, y2 − t〉 � ·Q(t)[x, y]. Then m1 = x2 + 1 + t is real in every
real closed extension Rα of Q(t) which admits an ordering α in which t < −1 (note
that we conclude that m1 is real as it is indefinite over R), m2 = y2− t is real in every
real closed extension Rβ which admits an ordering β satisfying t > 0. Both types of
orderings, the α– and β-orderings, contradict each other.
In fact M is not real as

12 + x2 + y2 = m1 + m2 ∈M

and hence 1 ∈ re
√

M .

Analogous to the Shape Lemma, there holds a stronger property for maximal ideals
that can be tested very easily:

Proposition 25
Let M � ·F [x1, . . . , xn] be a maximal ideal and G = {g1, . . . , gn} the reduced
Gröbner basis of M with respect to any lexicographical ordering with smallest vari-
able xi. If G has the following properties:

• g1 ∈ F [xi] and g1 is real.1

• every gi for i = 2, . . . , n has odd degree in its leading variable2.

Then the maximal ideal M is real.
PROOF
Assume for simplicity that G = {g1, . . . , gn} is a Gröbner basis satisfying the proper-
ties above w. r. t. the ordering x1 < x2 < . . . < xn.
As g1 ∈ F [x1] is real there exists a real closed field R ⊃ F such that g1 has a zero
α1 ∈ R. Now g2(x2, α1) ∈ R[x2] has odd degree and thus has a zero α2 in R by
the fundamental theorem of algebra. By the same reason g3(x3, α2, α1) ∈ R[x3] has a
zero α3 ∈ R. Inductively there exists an α ∈ VRn(M).
Thus VR(M) 6= ∅ and hence, by the definition of the real zero-set of M , Vre(M) 6= ∅.
Now by the Real Nullstellensatz re

√
M = IF (VR(M)) = IF (α) ⊂M . As M is maxi-

mal and Vre(M) 6= ∅ we conclude the realness of M .
1G is a triangular set as it is a reduced lexicographical Gröbner basis, wlog we can assume that the

univariate polynomial in smallest variable in G is g1.
2Let f ∈ Q[x1, . . . , xn]. The leading variable of f (short lvar(f)) is the largest variable in f , i. e. if

f = as(x1, . . . , xk−1)xs
k + as−1(x1, . . . , xk−1)xs−1

k + . . . + a0(x1, . . . , xk−1),

as ∈ Q[x1, . . . , xk−1] \ {0}, for a k ≤ n, then lvar(f) = xk and the pseudo leading coefficient of f is
ini(f) = as(x1, . . . , xk−1).



A last non-trivial condition to test the realness of M is:

Lemma 26
Let M = 〈m1, . . . ,mn〉 be a maximal ideal in F [x1, . . . , xn] written as a reduced
lexicographical Gröbner basis w.r.t to the ordering x1 < x2 < . . . < xn. If M is real,
every generator mi is real.

PROOF
Assume contrary: Thus let i be the smallest index such that mi is not real. As M is a
lexicographical Gröbner basis we get the following cases:

Case 1: i = 1 then m1 ∈ F [x1] and has no real root. So

〈1〉 = re
√

m1 ⊂ re
√
〈m1, . . . ,mn〉 = re

√
M.

Thus M is not real which is a contradiction.

Case 2: i > 1. Let R be an arbitrary real closure of (F, α) w. r. t. an ordering α of
F such that a = (a1, . . . , an) ∈ Rn is a real point of M (i. e. a ∈ Vre(M)).
Then we have the following situation:

• M ′ := 〈m1, . . . ,mi〉 = M ∩F [x1, . . . , xi] � ·F [x1, . . . xi] is real since
(a1, . . . , ai) ∈ VR(M ′) ⊂ Vre(M ′).

• M ′′ := 〈m1, . . . ,mi−1〉 = M ∩ F [x1, . . . , xi−1] � ·F [x1, . . . xi−1] is
real since (a1, . . . , ai−1) ∈ VR(M ′′) ⊂ Vre(M ′′).

As M ′ is real, the ordering α of F can be extended in k(M) = F [x1, . . . , xn]/M ,
i. e. k(M) is a formally real field (see Proposition 8). From the first isomor-
phism theorem, we get:

F [x1, . . . , xi]/M ′ ∼= (F [x1, . . . , xi−1, xi]/M ′′)/(M ′/M ′′)
= ((F [x1, . . . , xi−1]/M ′′)[xi])/((〈mi〉+ M ′′)/M ′′).

Now as (a1, . . . , ai−1) is a (real) root of the maximal M ′′ we get that

F [x1, . . . , xi−1]/M ′′ ∼= F (a1, . . . , ai−1)

which is ordered by F (a1, . . . , ai−1) ∩R2. Hence

k(M) ∼= F (a1, . . . , ai−1)[xi]/〈mi(a1, . . . , ai−1, xi)〉

and k(M) is real. Thus the ordering F (a1, . . . , ai−1) ∩ R2 can be extended
to F (a1, . . . , ai−1, ai) ∩ R2 (as ai is a real root of mi(a1, . . . , ai−1, xi) by
the definition of a). But then mi(a1, . . . , ai−1, xi) is indefinite over R by the
sign change criterion (Theorem 10) and thus mi(x1, . . . , xi) is indefinite over
R, too. Now we get from Remark 12 that mi is real which contradicts the
assumption.

Lemma 26 is no equivalence as we can see in the following example:

Example 27
Let M = 〈x3 − 2, y2 + x2 − x〉 � ·Q[x, y]. Now x3 − 2 is real since 3

√
2 is in R and

y2 + x2 − x is real by Lemma 18 as it is indefinite.
But M is not real as y2 + 3

√
2
2 − 3
√

2 has no real root since 3
√

2
2 − 3
√

2 > 0.



The following corollary is useful to test the realness of prime polynomials f ∈ F [x1, . . . , xn].

Corollary 28
Let f ∈ Q[y1, . . . , ym, x1, . . . , xn] be an irreducible polynomial. Then f is real con-
sidered as polynomial in F [x1, . . . , xn] if and only if f considered as a polynomial in
Q[y1, . . . , ym, x1, . . . , xn] is real.

PROOF
⇒: As 〈f〉F [x1, . . . , xn] is real in F [x1, . . . , xn], there exists an xi such that degxi

f >
0. Without loss of generality let xn be this xi. By Theorem 5 we conclude that
〈f〉F (x1, . . . , xn−1)[xn] = 〈f〉Q(y1, . . . , ym, x1, . . . , xn−1)[xn] is real. Thus
by Lemma 18 〈f〉Q[y1, . . . , ym, x1, . . . , xn] is real and hence f is real consid-
ered over Q[x1, . . . , xn, y1, . . . , ym].

⇐: This is clear as reality commutes with localisation (see Lemma 5).

Combining all these conditions yields a good heuristic to decide the property of
being real for maximal ideals M . Let us first consider a large example in which it was
possible to avoid the change into general position completely.

Example 29
Let

I = 〈(y3 + 3y2 + y + 1)(y2 + 4y + 4)(x2 + 1),

(x2 + y)(x2 − y2)(x2 + 2xy + y2)(y2 + y + 1)〉� Q[x, y]

The primary decomposition of I yields 10 maximal ideals.

1. M1 = 〈y2 + 1, x− y〉 which is not real as y2 + 1 is not real. Hence it does not
satisfy the conditions in Proposition 25 and Corollary 22..

2. M2 = 〈y − 1, x2 + 1〉 does not satisfy the Corollary 22 and is thus not real.

3. M3 = 〈y2 + y + 1, x2 + 1〉 does not satisfy Corollary 22 and is thus not real.

4. M4 = 〈y2 + 1, x + y〉 does not satisfy Corollary 22 and is thus not real.

5. M5 = 〈y + 2, x− 2〉 is real by Proposition 25 or Remark 23.

6. M6 = 〈y + 2, x2 − 2〉 is real by Proposition 25 for the ordering x < y with the
reduced Gröbner basis G = {x2 − 2, y + 2}.

7. M7 = 〈y + 2, x + 2〉 is real by Proposition 25 or Remark 23.

8. M8 = 〈y3 + 3y2 + y + 1, x + y〉 is real by Proposition 25 w. r. t. the ordering
y < x under which M is a reduced Gröbner bases.

9. M9 = 〈y3 + 3y2 + y + 1, x2 + y〉. Here it is not obvious to see if M9 is real or
not. So we have to compute the Gröbner bases w. r. t. both orderings x < y and
y < x.
The Gröbner basis w. r. t. to the lexicographical ordering x < y of M9 is

GM = 〈x6 − 3x4 + x2 − 1, y + x2〉.

First we have to test if x6−3x4 +x2−1 is real. We know that x6−3x4 +x2−1
is prime and after applying the RealPoly procedure introduced in the last
section we get that x6 − 3x4 + x2 − 1 is real. Now we know that M9 is real by
Proposition 25 w. r. t. to the ordering x < y.



10. M10 = 〈y3 + 3y2 + y + 1, x− y〉 is real by Proposition 25.

So the real radical of I is

re
√

I = M5 ∩M6 ∩M7 ∩M8 ∩M9 ∩M10

= 〈y4 + 5y3 + 7y2 + 3y + 2, x4 − x2y2 + x2y − y3〉

In the next subsection I describe a procedure using the criteria introduced above.
After giving this procedure it is easy to describe the algorithm for the zero-dimensional

case using a coordinate change into general position.

4.1.1 The procedure prepare max

The procedure prepare max which uses the properties introduced above acts in the
following way:
It gets as input a maximal ideal M and returns a list erg = M, j, where

M =
{

re
√

M if j = 1, the change into general position can be avoided
M if j = 0, the change into general position cannot be avoided

I explain my algorithm in pseudo-code. The proof of the correctness of this algorithm
follows from the criteria explained above. In the algorithm itself there is no need
to check Corollary 22 explicitly. This criterion is checked implicitly in the check of
Proposition 25 as we will see.

The procedure prepare max is written as follows:

Algorithm 30 (An heuristic to check if a coordinate change can be avoided)
proc prepare max(M)

INPUT : a maximal ideal M � ·F [x1, . . . , xn]

OUTPUT: a list erg = (M, j) s.t.:

M =
{

re
√

M if j = 1, the change into general position can be avoided
M if j = 0, the change into general position can′t be avoided

BEGIN

Initialise P := {λ : λ is a permutation of the variables {x1, . . . , xn}}

while (P 6= ∅) do {

Choose a λ = (xj1 , xj2 , . . . , xjn) ∈ P

P := P \ {λ}
Compute the lexicographical Gröbner basis Mλ = {f1, f2, . . . , fn} of M

w. r. t. the ordering xj1 < xj2 < . . . < xjn . Now f1 is univariate in
the variable xj1 .

Let f1 := RealPoly(f1) the real part of f1. As fi is prime there are two
possibilities f1 = 1 or f1 = f1.

if (f1 = 1)

{



erg := 〈1〉, 1
return(erg);

}
According to Proposition 25 search the first position k ≥ 2 such that mk has

even degree in xjk
. Set k = n + 1 if there exists none.

if (k > n)

{
erg := M, 1; (Correctness is clear from Prop. 25)
return(erg);

}
According to Lemma 26 search from. position (k + 1) in Mλ, the first non-real

generator mi.

If there exists a position i ≤ n set erg = 〈1〉, 1 and return erg.

}

If F is non parametric, i. e. F = Q and every generator of M is univariate use
Remark 23 and return erg := M, 1.

erg := M, 0;

return(erg);

END

In many cases the realness of maximal ideals can be checked only using the proce-
dure prepare max. But it may happen that an ideal fails this test, i. e. the result of
prepare max(M) is erg = M, 0. In this case we have to apply a coordinate change
into general position.
Here I used the already well-optimised coordinate change implemented in the primdec.lib.
The method I implemented during my diploma thesis is called GeneralPos. It gets
a list of maximal ideals which failed the test prepare max as input and returns the
intersection of all real maximal ideals of this input.

Let us consider an example. An ideal in which we have to apply a coordinate
change into general position was presented in Example 24. Lets have a look at this.

Example 31
Let M = 〈x2 + 1 + t, y2 − t〉� ·Q(t)[x, y]. Choosing the coordinate change

ϕ : Q(t)[x, y]→ Q(t)[x, y]
x 7→ x

y 7→ y + x + t

we get:

ϕ(M) = 〈x2 + 1 + t, (y + x + t)2 − t〉
= 〈x2 + 1 + t, x2 + 2xy + 2tx + y2 + 2ty + t2 − t〉



Its lexicographical Gröbner basis w. r. t. the ordering y < x is:

Gϕ = {y4 + 4ty3 + (6t2 + t)y2 + (4t3 + 4t)y + (t4 + 6t2 + 4t + 1),

(−4t− 2)x− y3 + (−3t)y2 + (−3t2 − 2t− 3)y + (−t3 − 2t2 − 3t)}.

Now y4 +4ty3 +(6t2 +2)y2 +(4t3 +4t)y +(t4 +6t2 +4t+1) is not real in Q(t)[y]
as y4 +4ty3 +(6t2 +2)y2 +(4t3 +4t)y +(t4 +6t2 +4t+1) is positive semi-definite
(which which can be seen using Lemma 18). Hence as in Example 24 we get that M is
not real.

In all my tests it didn’t happen often that I had to change into general position for
the test of being real. In fact the only examples I found in which there is a need to
apply this change are ideals over transcendent extensions of Q which are of the form in
Example 24, i. e. every generator is univariate and real. For these cases I have not yet
found any property to check realness without applying this change. A simple example
for an ideal in which this change yields the realness of a maximal ideal is the following:

Example 32
Let M = 〈x2 +1− t, y2− t〉� ·Q(t)[x, y]. Here the same coordinate change as in the
example above yields:

ϕ(M) = 〈x2 + 1− t, (y + x + t)2 − t〉
= 〈x2 + 1− t, x2 + 2xy + 2tx + y2 + 2ty + t2 − t〉

Here the Gröbner basis w. r. t. the lexicographical ordering y < x is:

Gϕ = {y4 + 4ty3 + (6t2 − 4t + 2)y2 + (4t3 − 8t2 + 4t)y + (t4 − 4t3 + 2t2 + 1),

2x + y3 + 3ty2 + (3t2 − 4t + 3)y + (t3 − 4t2 + 3t)}.

Now y4 + 4ty3 + (6t2 − 4t + 2)y2 + (4t3 − 8t2 + 4t)y + (t4 − 4t3 + 2t2 + 1) is real
as it is indefinite and the degree of 2x + y3 + 3ty2 + (3t2− 4t + 3)y + (t3− 4t2 + 3t)
in x is odd. Hence ϕ(M) is real by Proposition 25, thus M is real. In fact M is α-real
in every ordering α of Q(t) satisfying the condition t ≥ 1.

To see the algorithm GeneralPos I recommend looking at Algorithm 4.2 in
[Spa07].

4.2 An algorithm to compute the zero-dimensional radical
From the explanation in the last subsections, it is not difficult to get an algorithm which
computes the real radical of a zero-dimensional ideal J in F [x1, . . . , xn].

Algorithm 33
proc RealZero(I)

INPUT : a zero-dimensional ideal I � F [x1, . . . , xn]

OUTPUT: an ideal J s.th. J = re
√

I

Simplify the ideal I = 〈f1, . . . , fr〉 to J = 〈g1, . . . , gr〉 as described in [Spa07]
Remark 4.16,4

4These operations are applied with a time limit by the aid of the watchdog command. watch-
dog(command, timer) returns the result of the command if the time for the command finishes before the
timer.



Compute the associated primes of Max := Min(I) with primdecGTZ or primdecSY.
(This depends on which algorithm is faster.4).

Initialise Prep := ∅ and NonPrep := ∅

while Max 6= ∅ do

{

Choose an M ∈Max

Max := Max \ {M}
Compute erg = M, j with Algorithm 30.

If j = 1 and M 6= 〈1〉
{

Prep := Prep ∪ {M}
}
else

{
NonPrep := NonPrep ∪ {M}

}

Prepared :=
⋂

M∈Prep M :

NonPrepared := GeneralPos(NonPrep);5

According to Theorem 5 we get that

re
√

I = re
√

J = Prepared ∩NonPrepared =: J.

return(J);

To finish this chapter I give an example in which every path of Algorithm 33 is taken.

Example 34
Let

I = 〈(x2y3 − tx2y + y6 − y5 − ty4 + t2 + 1) · (y3 − t2y2 + (−t3 + t2 − t)y + t3),

(−2t)x4 − 4tx2 + (−t + 1)y6 + (−t2 + t)y5 + (t2 − t)y4 + (−t4 + t3)y2+

(t4 − t3)y + (t5 − t4 + 2t3 − 2t), y7 + t2y4 − t2y3 − t4, (−t)x2y2 + t2x2−
y6 − ty5 + ty4 + (−t3 + t2 − t)y2 + t3y + (t4 − t3 + t2)〉.

Then every generator of I is simplified in the sense of Remark 4.16.

1. The primary decomposition of I provides 4 minimal primes which are

• M1 = 〈x2 + 1− t, y3 + t2〉
• M2 = 〈x2 + t2 + 1, y2 + t〉
• M3 = 〈x2 + 1− t, y2 − t〉

5The idea of this approach was explained with 2 examples in the previous subsection.



• M4 = 〈x2 + 1 + t, y2 − t〉

We set Max := {M1,M2,M3,M4}.

2. Prep := ∅ and NonPrep := ∅

3. As Max is not empty choose M1 ∈Max and set

Max := Max \ {M1} = {M2,M3,M4}.

4. prepare max(M1) = M1, 1 because of Proposition 25. Hence set:

Prep := Prep ∪ {M1} = {M1}
NonPrep := NonPrep = ∅

5. As Max is not empty choose M2 ∈Max and set

Max := Max \ {M2} = {M3,M4}.

6. prepare max(M2) = 〈1〉, 1 by [Spa07] Lemma 3.2 w. r. t. the lexicographical
ordering y < x. Hence set:

Prep := Prep = {M1}
NonPrep := NonPrep = ∅

7. As Max is not empty choose M3 ∈Max and set

Max := Max \ {M3} = {M4}.

8. prepare max(M3) = M3, 0. Hence we have to apply a coordinate change and
set:

Prep := Prep = {M1}
NonPrep := NonPrep ∪ {M3} = {M3}

9. As Max is not empty choose M4 ∈Max and set

Max := Max \ {M4}.

10. prepare max(M4) = M4, 0. Hence we have to apply a coordinate change and
set:

Prep := Prep = {M1}
NonPrep := NonPrep ∪ {M4} = {M3,M4}

11. Now Max is empty and we set Prep = {M1}.

12. From the examples 31 and 32 we conclude with the coordinate change ϕ satisfying
ϕ(x) = x, ϕ(y) = y + x + t that M3 is real and M4 is not real. Hence

NonPrep = {M3}

13. Set

J = Prep ∩NonPrep = M1 ∩M3

= 〈y5 − ty3 + t2y2 − t3, x2 + (−t + 1)〉

Hence the real radical of I is

J = 〈y5 − ty3 + t2y2 − t3, x2 + (−t + 1)〉.



4.3 The general case as reduction
To conclude I shall explain shortly how to compute the real radical with the prepara-
tions of this article.

The main theorem for the higher dimensional computation, adapted from [BN98]
Theorem 4.5., is:
Theorem 35
Let I � F [x1, . . . , xn]. For any S ( {x1, . . . , xn} let J (S) denote an ideal of the
quotient ring F [x1, . . . , xn] · F (S) satisfying

dim J (S) ≤ 0 and I · F (S) ⊆ J (S) ⊆ (I · F (S))Iso.

Then
re
√

I =
⋂

S({x1,...,xn}

(
re
√

J (S) ∩ F [x1, . . . , xn])

As every J (S) has a dimension less then equal zero we are able to compute there real
radicals. Theorem 35 now tells us how to intersect all these ideals properly so that our
result will be the real radical. The theory of finding the J (S) uses real isolated points
for arbitrary formally real fields. It is explained in detail in [BN98] chapter 4 or in
chapter 5 of [Spa07].

5 Conclusions
Following a short introduction of the basics on real algebra and real radicals, I described
how to compute the real radical in the univariate case and in the zero-dimensional case.
The univariate case corresponds to the leaves of the reduction tree for computing real
radicals. While the univariate case uses theory which can already be found in litera-
ture, like Sturm’s Theorem (cf. [Coh93]) or the decision of indefiniteness (cf. [GX04]),
section 4, the zero-dimensional case, introduces newly found properties. The decision
was to compute the primary decomposition of the zero-dimensional input and to give
a heuristic for deciding whether a maximal ideal is real or not. This heuristic yield a
procedure prepare max which prepares a maximal ideal in such a way that we can
avoid a coordinate change into general position as often as possible. If we can not avoid
a coordinate change we use the procedure GeneralPos. Its input is a list of max-
imal ideals where a change can’t be avoided. Here a suitably randomised coordinate
change is computed such that we can check the properties of prepare max for the
transformed maximal ideals and afterwards we intersect all real maximal ideals of this
list. Finally, the procedure RealZero gets a zero-dimensional input I and computes
its primary decomposition. Then it considers separately every maximal ideal and tests
if a change is needed to compute the real part. Afterwards it intersects the real radicals
of all these ’nice’ maximal ideals and restarts the procedure GeneralPos for the list
of ’bad’ ideals. Since the primary decomposition is well-optimised in SINGULAR the
advantage of this is a time improvement during the computations. This is because co-
ordinate changes into general position cause a growth of coefficients and terms which
slows the Gröbner bases computations down. The idea presented in this abstract avoid
such changes as often as possible. Finally the article closes with the description how to
compute the arbitrary radical as a reduction to the zero-dimensional case. We have pre-
sented an algorithm to compute real radicals which uses the new introduced heuristic
prepare max and is thus a time improvement to the algorithm presented by Becker
and Neuhaus in [BN98].
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