Shell-Scripting

Linux-Kurs der Unix-AG

Benjamin Eberle

7. Juli 2015

U N I X R H Regionales
/ Hochschul-
™ Rechenzentrum
/,4) Kaiserslautern R K

TU kaiserslautern

Was ist ein Shell-Script?

» Aneinanderreihung von Befehlen, die ausgefiihrt werden
» Bedingte und wiederholende Ausfithrung moglich

» Niitzlich bei wiederkehrenden Routine-Aufgaben, die aus
mehreren Befehlen bestehen

» Scripte miissen ausfiihrbar sein (x bei Zugriffsrechten)

Benjamin Eberle Shell-Scripting 7. Juli 2015 2/16
I

Hello World!

1 #!/bin/sh
2 echo "Hello World!"

>

>

>

Gibt ,Hello World!” auf der Standard-Ausgabe aus
fangt einen einzeiligen Kommentar an

#! (Shebang) gibt an, mit welchem Programm das Script
ausgefiihrt werden soll

Shell-Scripte werden von einer Shell (z. B. /bin/sh oder
/bin/bash) ausgefiihrt

echo gibt Text zwischen den Anfiihrungszeichen auf der
Standard-Ausgabe aus (echo -n ohne folgenden
Zeilenumbruch)

Benjamin Eberle Shell-Scripting 7. Juli 2015 3/16

e

/bin/bash vs. /bin/sh

» /bin/bash hdufigste unter Linux verwendete Shell
» hoher Funktionsumfang, relativ grofs

» nicht immer installiert (z. B. nicht in eingebetteten
Systemen)

» /bin/sh stellt einen minimalen Funktionsumfang zur
Verfiigung

» immer vorhanden

» meistens Symlink auf eine andere Shell (z. B. bash, unter
Debian/Ubuntu dash)

» fiir Scripte nach Moglichkeit /bin/sh verwenden

Benjamin Eberle Shell-Scripting 7. Juli 2015 4/16

Variablen

Shellvariablen

» nur in der aktuellen Shell verfiigbar
» wird mit Variable=Wert definiert
» mit $Variable kann auf die Variable zugegriffen werden

» oder: ${Variable} (niitzlich, wenn die Variable in einer
Zeichenkette eingebettet ist)

» loschen mit unset

Umgebungsvariable

» Weitergabe an Kindprozesse mit export VARIABLE

» Mit export -n wird aus einer Umgebungsvariable wieder
eine Shellvariable

Benjamin Eberle Shell-Scripting 7. Juli 2015 5/16

Zeichenketten

» Zeichenketten werden z. B. als Argument fiir echo
verwendet

» auch fiir Dateinamen, Parameter, etc.

» miissen in Anfithrungszeichen gesetzt werden wenn sie
Leer- oder andere Sonderzeichen enthalten

» mit doppelten Anfiithrungszeichen werden Variablennamen
durch den Inhalt ersetzt

Benjamin Eberle Shell-Scripting 7. Juli 2015 6/16
I

Zeichenketten — Beispiel

1 #!/bin/sh

2 nachricht="Hallo Welt!?’

3 echo "Die_Nachricht,lautet: ${nachricht}"
4+ echo ’Die Nachricht lautet: ${machricht}’
Ausgabe:

1 Die Nachricht lautet: Hallo Welt'!
2 Die Nachricht lautet: ${nachricht}

Benjamin Eberle Shell-Scripting 7. Juli 2015 7116
I

Programmparameter

» Programme/Scripte im aktuellen Verzeichnis werden mit
./programm aufgerufen

v

es konnen Parameter angegeben werden:
./programm parl par2

v

auf diese kann im Script mit $1, $2 zugegriffen werden

v

$* enthilt alle Parameter

v

$# enthélt die Anzahl der tibergebenen Parameter

v

$0 enthalt den Programm-/Script-Namen

Benjamin Eberle Shell-Scripting 7. Juli 2015 8/16
I

Exit-Status

» Programme konnen mit oder ohne Fehler beendet werden
» Kein Fehler bedeutet Riickgabewert 0

» ,Fehler” erzeugen einen Riickgabewert grofier 0

» Kann mit $7 ausgelesen werden

» Kann durch exit Wert gesetzt werden (Bsp. exit 33)

» Code hinter && wird nur ausgefiihrt, wenn der erste Befehl
,erfolgreich” war

» z.B.rm foo && echo '"geloescht!"

» Code hinter | | nur, wenn der erste Befehl nicht
,erfolgreich” war

» z.B.rm verz/ || echo "geht nicht"

Benjamin Eberle Shell-Scripting 7. Juli 2015 9/16

test

test tiberpriift eine Bedingung, Kurzschreibweise mit []

» -e DATEI (exists): wahr, wenn die DATEI existiert

» -d VERZ (directory): wahr, wenn die VERZ ein Verzeichnis ist

» s1 = s2: wahr, wenn die Zeichenkette s1 identisch mit s2
ist

» s1 !'= s2: wahr, wenn sie nicht identisch sind

» n1 -eq n2 (equal): wahr, wenn n1 und n2 gleich sind

» nl -ne n2 (not equal): wahr, wenn n1 und n2 nicht gleich
sind

» nl -gt n2 (greater then): wahr, wenn n1 grofier als n2 ist

» nl -ge n2 (greater equal): wahr, wenn n1 grofer gleich n2
ist

» n1 -1t n2 (lower then): wahr, wenn n1 kleiner als n2 ist

» n1 -le n2 (lower equal): wahr, wenn n1 kleiner gleich n2 ist

Benjamin Eberle Shell-Scripting 7. Juli 2015 10/16

Beispiele

» test -e foo: Uiberpriift ob die Datei foo im aktuellen
Verzeichnis existiert

v

[-e foo 1: macht dasselbe

[abc = def]:tiberpriift ob der Text ,abc” mit ,,def”
ubereinstimmt

[23 -1t 42]:iiberpriift ob 23 kleiner als 42 ist
» [! ...]:kehrt die Bedingung um

Ergebnis der Uberpriifung findet sich im Exit-Status und
kann mit echo $? abgefragt werden

v

v

v

Wichtig: Leerzeichen nach der 6ffnenden und vor der
schlieflenden eckigen Klammer

Benjamin Eberle Shell-Scripting 7. Juli 2015 11/16

if-Bedingung

if Bedingungl; then
Befehll.1
Befehll.2
elif Bedingung2; then #elz2f 2st optional
Befehl2.1
Befehl2.2
else #else ist optional
Befehl3.1
Befehl3.2

O ® N G e W N =

fi

=
S

» wenn Bedingung] erfiillt ist, werden die Befehle 1.1 und 1.2
ausgefiihrt

» falls Bedingung1 nicht erfiillt ist, aber Bedingung?2, dann
werden die Befehle 2.1 und 2.2 ausgefiihrt

» in allen anderen Fillen die Befehle 3.1 und 3.2

Benjamin Eberle Shell-Scripting 7. Juli 2015 12/16

Beispiele

1 #1/bin/sh
> if [$# -eq 2 J; then # Anz. Parameter
3 if [$1 -gt $2]; then # $1>%2
4 echo $1 "istygroessergals" $2
5 elif [$1 -1t $2]; then # $2>¢1
6 echo $1 "ist_kleiner als" $2
7 else # ansonsten $1==§2
8 echo $1 "und" $2 "sind,gleich,gross"
9 fi
10 else # nicht genug Parameter
11 echo "Esymuessen 2 ,Parameter juebergeben werden!"
12 fi
Benjamin Eberle Shell-Scripting 7. Juli 2015 13/16

S

for-Schleifen

1 for i in XXX; do
2 Befehl
3 done

» XXX kann eine Liste oder ein Befehl sein

v

Befehle miissen “befehl” oder $(befehl) geschrieben
werden

v

*: Backtick (Akzent Gravis), links neben Backspace

v

for i in $x geht alle Parameter durch

Benjamin Eberle Shell-Scripting 7. Juli 2015 14/16
I

Beispiele

#!/bin/sh
liste=’1 2 3’ # Hochkomma, auf der #-Taste
for i in $liste; do
echo $i
done

-

L L~ I S

#!/bin/sh

for i in ‘seq 1 3¢; do # Gravis, neben der ?-Taste
echo $i

done

S

#!1/bin/sh

for i in $(seq 1 3); do
echo $i

done

-

=W N

Benjamin Eberle Shell-Scripting 7. Juli 2015 15/16
I

niitzliche Dinge

» read wartet auf eine Eingabe ins Terminal. Wird mit Enter
bestatigt

» read -s liest die Eingabe ohne sie anzuzeigen

» sleep 10 wartet 10 Sekunden ab

» $((Ausdruck)) wertet den Ausdruck arithmetisch aus
» x=$(($x+1)) erhoht x um eins

» lange Befehle konnen mit \ auf mehrere Zeilen aufgeteilt
werden:

1 mv verzeichnis/mit/vielen/unterverzeichnissen/abc \
2 in/ein/anderes/verzeichnis/

Benjamin Eberle Shell-Scripting 7. Juli 2015 16/16
I

	Einführung
	Variablen
	Zeichenketten
	Programmaufruf
	Konstrukte

