
Shell-Scripting
Linux-Kurs der Unix-AG

Benjamin Eberle

7. Juli 2015

Was ist ein Shell-Script?

I Aneinanderreihung von Befehlen, die ausgeführt werden
I Bedingte und wiederholende Ausführung möglich
I Nützlich bei wiederkehrenden Routine-Aufgaben, die aus

mehreren Befehlen bestehen
I Scripte müssen ausführbar sein (x bei Zugriffsrechten)

Benjamin Eberle Shell-Scripting 7. Juli 2015 2 / 16

Hello World!

1 #!/bin/sh

2 echo "Hello World!"

I Gibt „Hello World!“ auf der Standard-Ausgabe aus
I # fängt einen einzeiligen Kommentar an
I #! (Shebang) gibt an, mit welchem Programm das Script

ausgeführt werden soll
I Shell-Scripte werden von einer Shell (z. B. /bin/sh oder

/bin/bash) ausgeführt
I echo gibt Text zwischen den Anführungszeichen auf der

Standard-Ausgabe aus (echo -n ohne folgenden
Zeilenumbruch)

Benjamin Eberle Shell-Scripting 7. Juli 2015 3 / 16

/bin/bash vs. /bin/sh

I /bin/bash häufigste unter Linux verwendete Shell
I hoher Funktionsumfang, relativ groß
I nicht immer installiert (z. B. nicht in eingebetteten

Systemen)
I /bin/sh stellt einen minimalen Funktionsumfang zur

Verfügung
I immer vorhanden
I meistens Symlink auf eine andere Shell (z. B. bash, unter

Debian/Ubuntu dash)
I für Scripte nach Möglichkeit /bin/sh verwenden

Benjamin Eberle Shell-Scripting 7. Juli 2015 4 / 16

Variablen

Shellvariablen

I nur in der aktuellen Shell verfügbar
I wird mit Variable=Wert definiert
I mit $Variable kann auf die Variable zugegriffen werden
I oder: ${Variable} (nützlich, wenn die Variable in einer

Zeichenkette eingebettet ist)
I löschen mit unset

Umgebungsvariable

I Weitergabe an Kindprozesse mit export VARIABLE

I Mit export -n wird aus einer Umgebungsvariable wieder
eine Shellvariable

Benjamin Eberle Shell-Scripting 7. Juli 2015 5 / 16

Zeichenketten

I Zeichenketten werden z. B. als Argument für echo
verwendet

I auch für Dateinamen, Parameter, etc.
I müssen in Anführungszeichen gesetzt werden wenn sie

Leer- oder andere Sonderzeichen enthalten
I mit doppelten Anführungszeichen werden Variablennamen

durch den Inhalt ersetzt

Benjamin Eberle Shell-Scripting 7. Juli 2015 6 / 16

Zeichenketten – Beispiel

1 #!/bin/sh

2 nachricht='Hallo Welt!'

3 echo "Die Nachricht lautet: ${nachricht}"

4 echo 'Die Nachricht lautet: ${nachricht}'

Ausgabe:
1 Die Nachricht lautet: Hallo Welt!

2 Die Nachricht lautet: ${nachricht}

Benjamin Eberle Shell-Scripting 7. Juli 2015 7 / 16

Programmparameter

I Programme/Scripte im aktuellen Verzeichnis werden mit
./programm aufgerufen

I es können Parameter angegeben werden:
./programm par1 par2

I auf diese kann im Script mit $1, $2 zugegriffen werden
I $* enthält alle Parameter
I $# enthält die Anzahl der übergebenen Parameter
I $0 enthält den Programm-/Script-Namen

Benjamin Eberle Shell-Scripting 7. Juli 2015 8 / 16

Exit-Status

I Programme können mit oder ohne Fehler beendet werden
I Kein Fehler bedeutet Rückgabewert 0
I „Fehler“ erzeugen einen Rückgabewert größer 0
I Kann mit $? ausgelesen werden
I Kann durch exit Wert gesetzt werden (Bsp. exit 33)
I Code hinter && wird nur ausgeführt, wenn der erste Befehl

„erfolgreich“ war
I z.B. rm foo && echo "geloescht!"

I Code hinter || nur, wenn der erste Befehl nicht
„erfolgreich“ war

I z.B. rm verz/ || echo "geht nicht"

Benjamin Eberle Shell-Scripting 7. Juli 2015 9 / 16

test

test überprüft eine Bedingung, Kurzschreibweise mit []

I -e DATEI (exists): wahr, wenn die DATEI existiert
I -d VERZ (directory): wahr, wenn die VERZ ein Verzeichnis ist
I s1 = s2: wahr, wenn die Zeichenkette s1 identisch mit s2

ist
I s1 != s2: wahr, wenn sie nicht identisch sind
I n1 -eq n2 (equal): wahr, wenn n1 und n2 gleich sind
I n1 -ne n2 (not equal): wahr, wenn n1 und n2 nicht gleich

sind
I n1 -gt n2 (greater then): wahr, wenn n1 größer als n2 ist
I n1 -ge n2 (greater equal): wahr, wenn n1 größer gleich n2

ist
I n1 -lt n2 (lower then): wahr, wenn n1 kleiner als n2 ist
I n1 -le n2 (lower equal): wahr, wenn n1 kleiner gleich n2 ist

Benjamin Eberle Shell-Scripting 7. Juli 2015 10 / 16

Beispiele

I test -e foo: überprüft ob die Datei foo im aktuellen
Verzeichnis existiert

I [-e foo]: macht dasselbe
I [abc = def]: überprüft ob der Text „abc“ mit „def“

übereinstimmt
I [23 -lt 42]: überprüft ob 23 kleiner als 42 ist
I [! ...]: kehrt die Bedingung um
I Ergebnis der Überprüfung findet sich im Exit-Status und

kann mit echo $? abgefragt werden

Wichtig: Leerzeichen nach der öffnenden und vor der
schließenden eckigen Klammer

Benjamin Eberle Shell-Scripting 7. Juli 2015 11 / 16

if-Bedingung

1 if Bedingung1; then

2 Befehl1 .1

3 Befehl1 .2

4 elif Bedingung2; then #elif ist optional

5 Befehl2 .1

6 Befehl2 .2

7 else #else ist optional

8 Befehl3 .1

9 Befehl3 .2

10 fi

I wenn Bedingung1 erfüllt ist, werden die Befehle 1.1 und 1.2
ausgeführt

I falls Bedingung1 nicht erfüllt ist, aber Bedingung2, dann
werden die Befehle 2.1 und 2.2 ausgeführt

I in allen anderen Fällen die Befehle 3.1 und 3.2
Benjamin Eberle Shell-Scripting 7. Juli 2015 12 / 16

Beispiele

1 #!/bin/sh

2 if [$# -eq 2]; then # Anz. Parameter

3 if [$1 -gt $2]; then # $1 >$2

4 echo $1 "ist groesser als" $2

5 elif [$1 -lt $2]; then # $2 >$1

6 echo $1 "ist kleiner als" $2

7 else # ansonsten $1==$2

8 echo $1 "und" $2 "sind gleich gross"

9 fi

10 else # nicht genug Parameter

11 echo "Es muessen 2 Parameter uebergeben werden!"

12 fi

Benjamin Eberle Shell-Scripting 7. Juli 2015 13 / 16

for-Schleifen

1 for i in XXX; do

2 Befehl

3 done

I XXX kann eine Liste oder ein Befehl sein
I Befehle müssen `befehl` oder $(befehl) geschrieben

werden
I `: Backtick (Akzent Gravis), links neben Backspace
I for i in $* geht alle Parameter durch

Benjamin Eberle Shell-Scripting 7. Juli 2015 14 / 16

Beispiele

1 #!/bin/sh

2 liste='1 2 3' # Hochkomma , auf der #-Taste

3 for i in $liste; do

4 echo $i

5 done

1 #!/bin/sh

2 for i in `seq 1 3`; do # Gravis , neben der ?-Taste

3 echo $i

4 done

1 #!/bin/sh

2 for i in $(seq 1 3); do

3 echo $i

4 done

Benjamin Eberle Shell-Scripting 7. Juli 2015 15 / 16

nützliche Dinge

I read wartet auf eine Eingabe ins Terminal. Wird mit Enter
bestätigt

I read -s liest die Eingabe ohne sie anzuzeigen
I sleep 10 wartet 10 Sekunden ab
I $((Ausdruck)) wertet den Ausdruck arithmetisch aus
I x=$(($x+1)) erhöht x um eins
I lange Befehle können mit \ auf mehrere Zeilen aufgeteilt

werden:

1 mv verzeichnis/mit/vielen/unterverzeichnissen/abc \

2 in/ein/anderes/verzeichnis/

Benjamin Eberle Shell-Scripting 7. Juli 2015 16 / 16

	Einführung
	Variablen
	Zeichenketten
	Programmaufruf
	Konstrukte

